What Digital Camera and Public Cloud Have in Common

This is a picture featured in the March 2016 issue of the Outdoor Photographer magazine:

2016-04-07-panorama

To take such a high resolution panorama picture, traditionally it needs a high-end large format or at least medium format camera. But this one was taken by using a handheld Canon EOS 1Ds Mark III with a Canon EF 24-105mm ƒ/4L IS USM lens at 50mm, which is, in layman’s terms, a mass market digital camera (although 1Ds Mark III is at the expensive end of that range). The composited panorama consists of five vertical images captured at ƒ/13 and ISO 400. We are seeing more such things in the digital photography world. Another example is the High Resolution mode of the Olympus OM-D E-M5 II camera. E-M5 II is a commodity camera: the sensor is smaller (Micro 4/3) and has only 16 megapixels. But it can shoot a 40 megapixel picture by shifting the sensor in half-pixel steps and capturing eight images over a period of one second. The moral here is, with the help of software, commodity digital cameras can achieve what could only be achieved by high-end cameras.

Replace “digital cameras” with “computer hardware” and that will be the spirit of the cloud computing. Cloud platforms, especially the public clouds like AWS and Azure, use commodity hardware to achieve what could only be achieved by high-end super computers and expensive networking devices. In this analogy, IBM’s mainframes and EMC’s storage systems are the large format and medium format cameras. Cloud platforms stitch together a bunch of commodity computers with the help of software, just like how George Lepp stitched together the pictures shot by a household DSLR, with the help of software, to produce a high resolution panorama pictures.

Having said that, in the digital photography world, there are still situations where we have to use high-end cameras. Take the panorama picture of the balloons as an example. If the balloons were some other fast moving objects, such as birds and buffalos, George Lepp’s technique wouldn’t work. He would have had to use a large or medium format camera to freeze all the motions in one single shot. We have seen similar situations in cloud platforms. There are still some situations where the computing has to be done in a single high-end computer. That’s why even in AWS and Azure, there are very high-end configurations of machines: Azure G-Series VMs come with up to 32 vCPUs, 448 GB of memory and 6.59 TB of local SSD space. The largest AWS EC2 instances are in the same neighborhood. However, local network speed is getting faster and faster: the best Azure VM type now supports 20 Gigabit network and AWS EC2 supports up to 10 Gigabit. The technology of 40 Gb and 100 Gb is already ready and 400 Gb is on the horizon. With faster Ethernet speed, more workloads can be scaled out, which wasn’t possible in the past due to the limitation of network speed.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s